Package: prepdat 1.0.8

prepdat: Preparing Experimental Data for Statistical Analysis

Prepares data for statistical analysis (e.g., analysis of variance ;ANOVA) by enabling the user to easily and quickly merge (using the file_merge() function) raw data files into one merged table and then aggregate the merged table (using the prep() function) into a finalized table while keeping track and summarizing every step of the preparation. The finalized table contains several possibilities for dependent measures of the dependent variable. Most suitable when measuring variables in an interval or ratio scale (e.g., reaction-times) and/or discrete values such as accuracy. Main functions included are file_merge() and prep(). The file_merge() function vertically merges individual data files (in a long format) in which each line is a single observation to one single dataset. The prep() function aggregates the single dataset according to any combination of grouping variables (i.e., between-subjects and within-subjects independent variables, respectively), and returns a data frame with a number of dependent measures for further analysis for each cell according to the combination of provided grouping variables. Dependent measures for each cell include among others means before and after rejecting all values according to a flexible standard deviation criteria, number of rejected values according to the flexible standard deviation criteria, proportions of rejected values according to the flexible standard deviation criteria, number of values before rejection, means after rejecting values according to procedures described in Van Selst & Jolicoeur (1994; suitable when measuring reaction-times), standard deviations, medians, means according to any percentile (e.g., 0.05, 0.25, 0.75, 0.95) and harmonic means. The data frame prep() returns can also be exported as a txt file to be used for statistical analysis in other statistical programs.

Authors:Ayala S. Allon [aut, cre], Roy Luria [aut], James Grange [ctb], Nachshon Meiran [ctb]

prepdat_1.0.8.tar.gz
prepdat_1.0.8.zip(r-4.5)prepdat_1.0.8.zip(r-4.4)prepdat_1.0.8.zip(r-4.3)
prepdat_1.0.8.tgz(r-4.4-any)prepdat_1.0.8.tgz(r-4.3-any)
prepdat_1.0.8.tar.gz(r-4.5-noble)prepdat_1.0.8.tar.gz(r-4.4-noble)
prepdat_1.0.8.tgz(r-4.4-emscripten)prepdat_1.0.8.tgz(r-4.3-emscripten)
prepdat.pdf |prepdat.html
prepdat/json (API)
NEWS

# Install 'prepdat' in R:
install.packages('prepdat', repos = c('https://ayalaallon.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ayalaallon/prepdat/issues

Datasets:
  • finalized_stroopdata - Finalized Table 'prepdat::prep()' returns for 'stroopdata' According to the Example in 'prepdat::prep()'.
  • stroopdata - Reaction-times and accuracy for color naming in a Stroop task (e.g., Stroop, 1935).

On CRAN:

3.92 score 15 stars 11 scripts 194 downloads 1 mentions 6 exports 26 dependencies

Last updated 6 years agofrom:920bfddbcf. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 11 2024
R-4.5-winOKOct 11 2024
R-4.5-linuxOKOct 11 2024
R-4.4-winOKOct 11 2024
R-4.4-macOKOct 11 2024
R-4.3-winOKOct 11 2024
R-4.3-macOKOct 11 2024

Exports:file_mergehybrid_recursive_mcmodified_recursive_mcnon_recursive_mcprepread_data

Dependencies:clidplyrfansigenericsglueGPArotationlatticelifecyclemagrittrmnormtnlmepillarpkgconfigplyrpsychR6Rcppreshape2rlangstringistringrtibbletidyselectutf8vctrswithr